
Динамика растительного покрова Хакасии в связи с рельефом и климатом

К.т.н., доцент Сергей Им (ИЛ СО РАН, СибГУ, ХГУ) Красноярск, 2022 В горно-таежных лесах Алтае-Саянского региона в последние десятилетия наблюдается продвижение по градиенту высоты и увеличение сомкнутости деревьев на высотном пределе их произрастания деревьев. Однако, с другой стороны, в Хакассии наблюдается усыхание части темнохвойных лесов, вызванное формированием неблагоприятных условий среды обитания.

В Хакасии темнохвойные деревья произрастают преимущественно в горной труднодоступной местности. Для их изучения целесообразно применять данные дистанционного зондирования Земли в совокупности с ГИС-технологиями.

Цель данной работы заключалась в проведении анализа динамики растительного покрова на территории Хакасии в контексте современного климата.

Объект исследования

Анализировался растительный покров республики Хакасия (**51.5°–55° с.ш.**; 88°–92° в.д.; **62 тыс. кв. км**).

Протяженность с севера на юг ~460 км, с запада на восток ~200 км.

На севере, востоке и юго-востоке Хакасия граничит с Красноярским краем, на юге — с Республикой Тыва, на юго-западе — с Республикой Алтай, на западе — с Кемеровской областью.

Климат резко континентальный, с сухим жарким летом и холодной малоснежной зимой. Средняя температура воздуха летом +15.1°C, зимой –минус 16,1°C. В год выпадает 788 мм осадков (в горах до 1700 мм, в степях менее 450 мм).

Ландшафт – степи, горы и тайга.

Саянские горы занимают две трети территории. Высоты – 203-2968 м.

Площадь лесного фонда ~65% территории.

Материалы

- Серия карт наземного покрова IGBP MODIS MCD12Q1 за 2001—2020 гг. (сервиса HACA Earth Explorer; пространственное разрешение 500 м).
- Данные о гарях MODIS MCD64A1 за 2001—2020 гг. (сервиса HACA Earth Explorer; пространственное разрешение 500 м).
- Временные серии вегетационных индексов NDVI и EVI за летний период с 2000 по 2021 гг. по данным дистанционного зондирования спектрорадиометром MODIS (сервис HACA Earth Explorer; пространственное разрешение 250 м).
- Помесячные климатические данные ERA5-Land за 2000—2021 гг. с пространственным разрешение ~9 км. (https://www.ecmwf.int/en/era5-land; пространственное разрешение ~9 км)
- Цифровая модель рельефа Copernicus GLO30 (https://portal.opentopography.org/raster?opentopolD=OTSDEM.032021.4326.3; пространственное разрешение 30 м).

Методика

1) Анализ временной серии карт наземного покрова

Произведена гармонизация временной серии карт IGBP MCD12Q1 с помощью пятилетнего фильтра большинства.

Анализировались следующие классы IGBP:

- Древостои: вечнозеленые хвойные леса (ENF); лиственничные леса (DNF); лиственные леса (DBF); смешанные леса с сомкнутостью > 60% (MF); смешанные леса с сомкнутостью < 30% (S);
- Кустарники (CS+OS);
- Травяные сообщества (G+C+CNVM).

Удалены территории гарей.

Рассчитана динамика площадей классов лесных территорий.

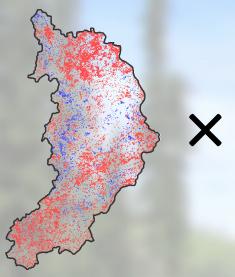
Динамика площадей сопоставлена с элементами рельефа и климатическими переменными. Для учета неравномерного распределения элементов рельефа площади классов нормировались. Связь динамики площадей с климатическими переменными оценивалась с помощью корреляционного анализа.

2) Анализ временных серий вегетационных индексов

Расчет и анализ карт линейных трендов вегетационных индексов для территорий с положительными вегетационными индексам по состоянию на 2000 г.

Для каждого пикселя многослойного растра вегетационного индекса производится расчет линейных трендов вида

$$y = a \cdot x + b$$


где у – оцениваемые значения вегетационных индексов;

- х время, соответствующее годам 2000-2021;
- а коэффициент наклона линии тренда;
- b коэффициент сдвига.

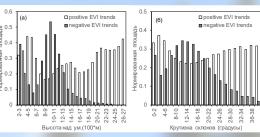
Вычисляются растры коэффициентов детерминации r^2 и фактические уровни значимостей коэффициентов наклонов трендов. Далее анализировались статистически значимые тренды (p < 0.05).

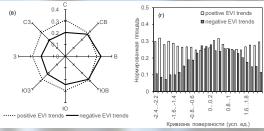
Сопоставление карт трендов с рельефом местности.

Положительные и отрицательные тренды EVI и NDVI

Высота на у.м.

Азимуты склонов



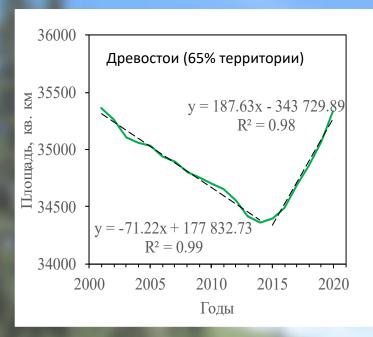

Углы склонов

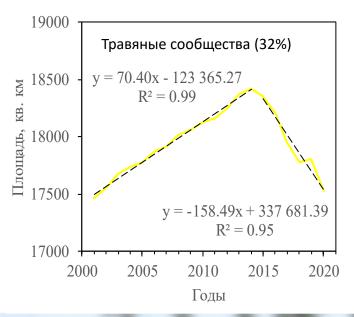
Кривизна поверхностей

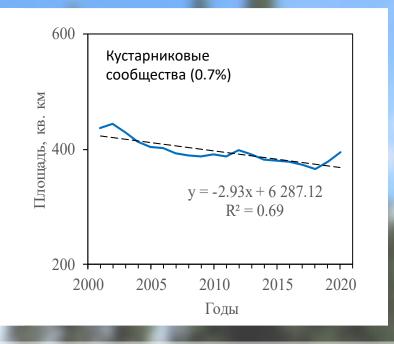
Площади нормировались на представленность элементов рельефа.

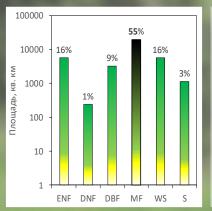
$$A_n = k * \frac{A_f}{A_a}$$

где A_n – нормированная площадь;

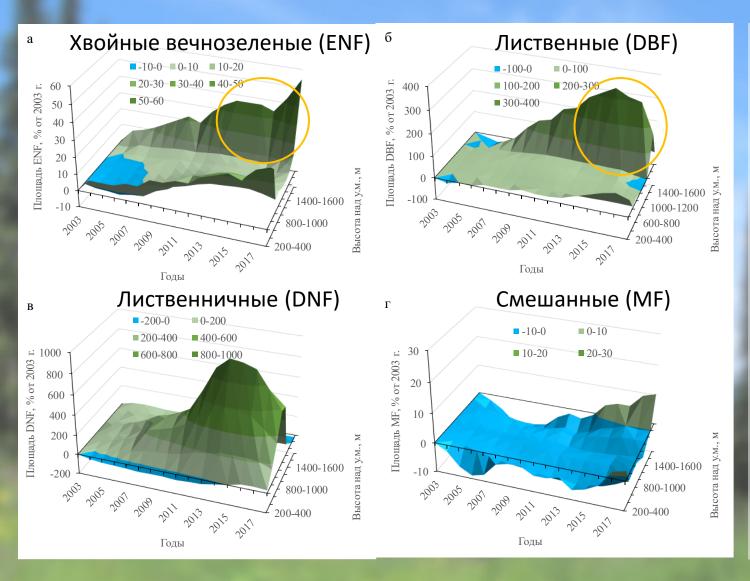

 A_f – исходная площадь;


A_а – площадь анализируемого элемента рельефа;


k – коэффициент масштабирования.

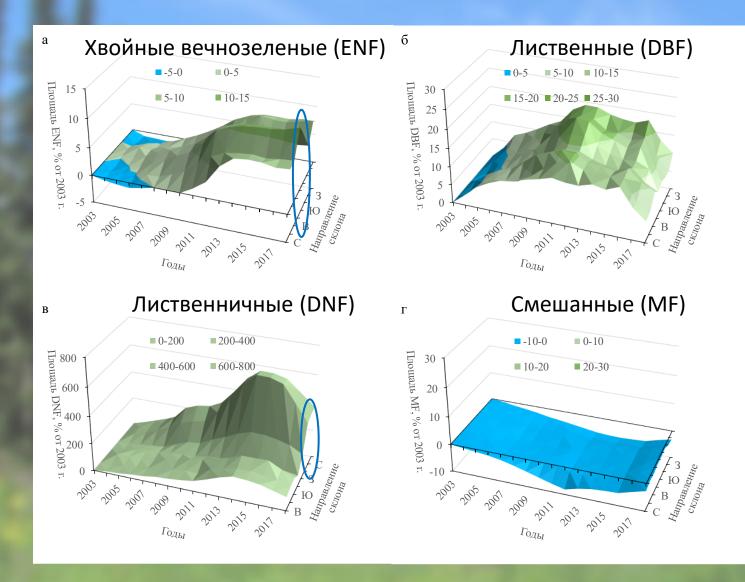

Результаты

Динамика площадей наземного покрова на территории Хакасии в 2001–2020 гг.

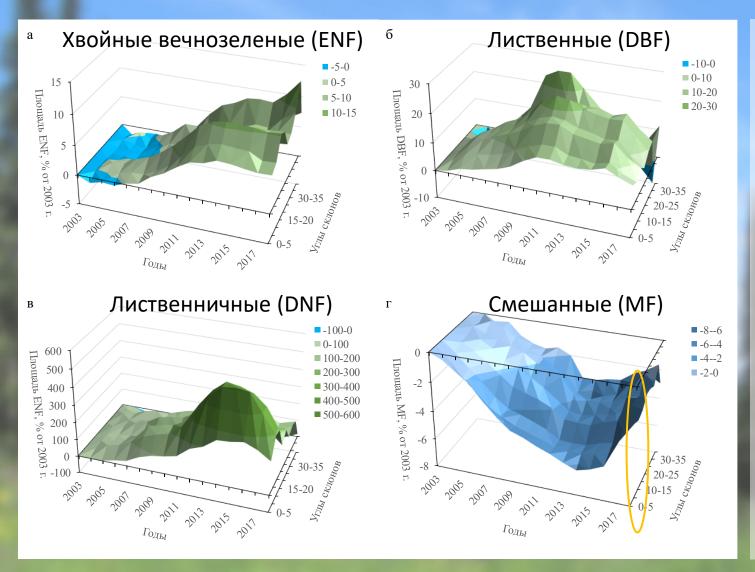


Наблюдается обратно-направленные динамики площадей древостоев и травяных сообществ на фоне сокращения площадей кустарников. Классы древостоев IGBP: ENF — вечнозеленые хвойные леса; DNF — лиственничные леса; DBF — лиственные леса; MF — смешанные леса с сомкнутостью > 60%; WS — смешанные леса с сомкнутостью 30—60%; S — смешанные леса с сомкнутостью < 30%.

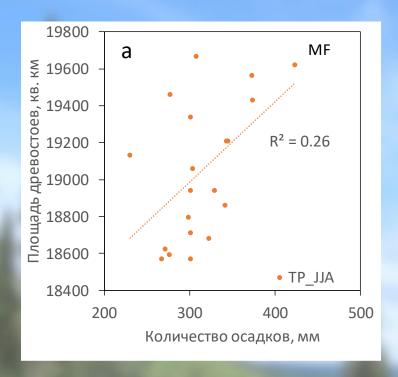
С 2001 по 2014 гг. площадь древостоев сокращалась на 71 кв. км в год (минус 945 кв. км = ~2,7%), а в последующие годы их площадь почти восстановилась.

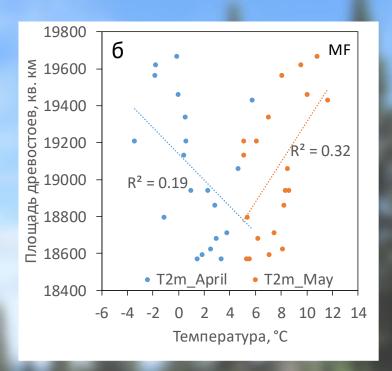

Площадь кустарниковых сообществ уменьшалась в течение всего периода наблюдений на 2,9 кв. км в год (за весь период ~9,8%).

Динамика площадей по высотным срезам

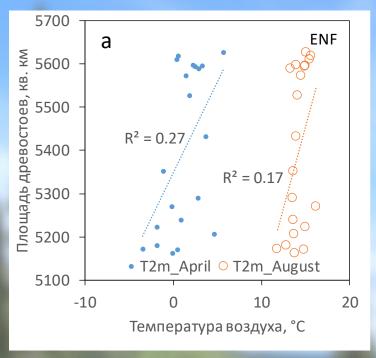

- Площадь хвойных вечнозеленых лесов уменьшалась на высотах до 1000 м в течение 2003—2007 гг., а после стала нарастать. Наибольший рост площади наблюдался на высотах выше 1500 м над у.м.
- Площадь лиственных лесов динамично росла на высотах 1400-1600 м над у.м.
- Лиственничные древостои значительно увеличили свою площадь на высотах 400—1400 м над у.м. (~400% к 2018 г.), но при этом их площадь сократилась на высотах больше 1600 м над у.м.
- Площадь смешанных лесов сокращалась на всех высотах до 1800 м над у.м., а выше немного возросла.

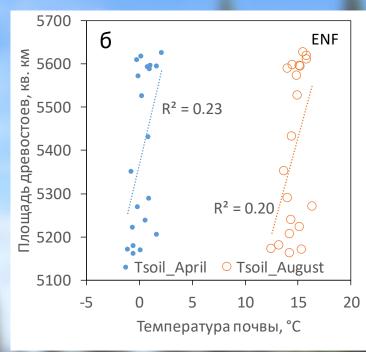
Динамика площадей в связи с направлениями склонов


- Площадь хвойных вечнозеленых лесов уменьшалась на северных и западных склонах в течение 2003—2007 гг., а после стала нарастать. Наибольший рост площади ENF наблюдался на восточных склонах.
- Площадь лиственных лесов больше возрастала на западных склонах.
- Лиственничные древостои значительно увеличили площадь на северных склонах.
- Площадь смешанных лесов (МF) сокращалась на склонах всех направлений условно равномерно.


Динамика площадей в связи с крутизной склонов

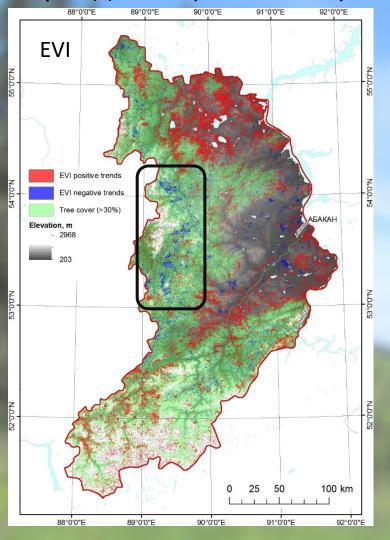
- Площадь хвойных вечнозеленых лесов возрастала преимущественно на крутых склонах (>10 градусов)
- Площадь лиственных лесов росла до 2012 на всех склонах. Далее стала резко сокращаться.
- Лиственничные древостои к 2014 г. значительно увеличили площадь на склонах крутизной 5-15, а далее наблюдалось сокращение.
- Площадь смешанных лесов (MF) значительно сокращалась на пологих склонах до 2014 г, а после стала возрастать.

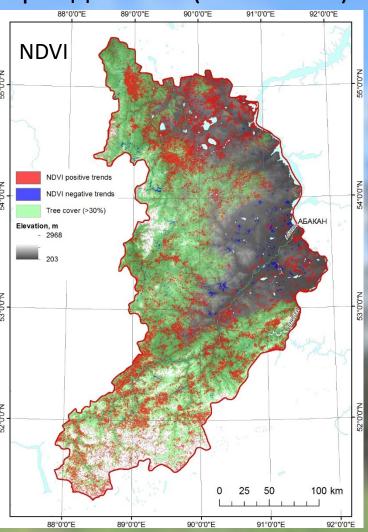

Связь динамики площадей смешанных древостоев с климатическими переменными (2001-2020 гг.)



Летние осадки (a; rho = 0.56; p < 0.05) и майские температуры (б; rho = 0.49; p < 0.05) оказали положительное влияние на динамику площади MF. Отрицательное действие оказали апрельские температуры (б; rho = -0.53; p < 0.05).

Связь динамики вечнозеленых хвойных древостоев с климатом (2001-2020 гг.)




Динамика площади ENF положительно связана с апрельскими температурами воздуха (rho = 0.50 и 0.59; p < 0.05) и почвы (rho = 0.52 и 0.55; p < 0.05);

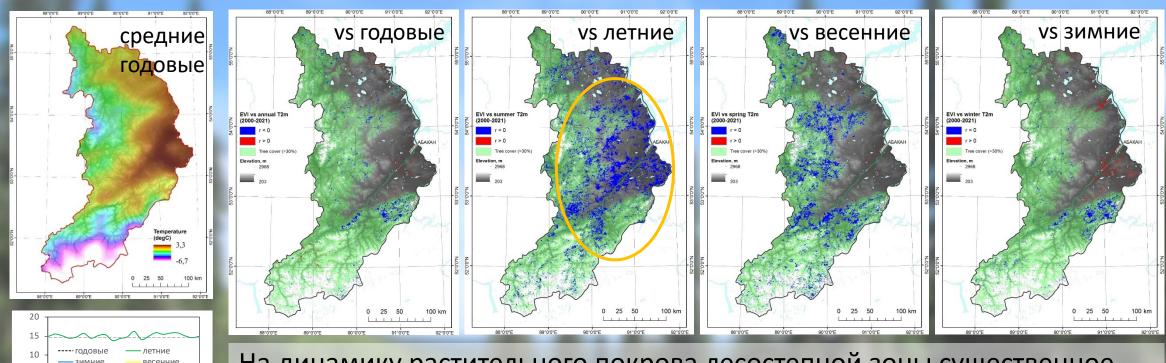
Тренды вегетационных индексов

Тренды EVI (2000-2021)

Тренды NDVI (2000-2021)

В горных территориях центральной части индекс EVI показывает отрицательные тренды, которые не идентифицируются по индексу NDVI.

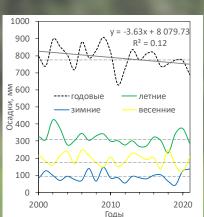
С другой стороны NDVI показывает более обширные территории с положительными трендами.


Положительные тренды вегетационных индексов наблюдались на 10,3–13,5 кв. км (16–22% территории), а отрицательные – на 0,7–1,7 тыс. кв. км (1,2–2,8% территории).

Зоны положительных и отрицательных трендов индексов EVI и NDVI совпадают на 31% и 15%, соответственно.

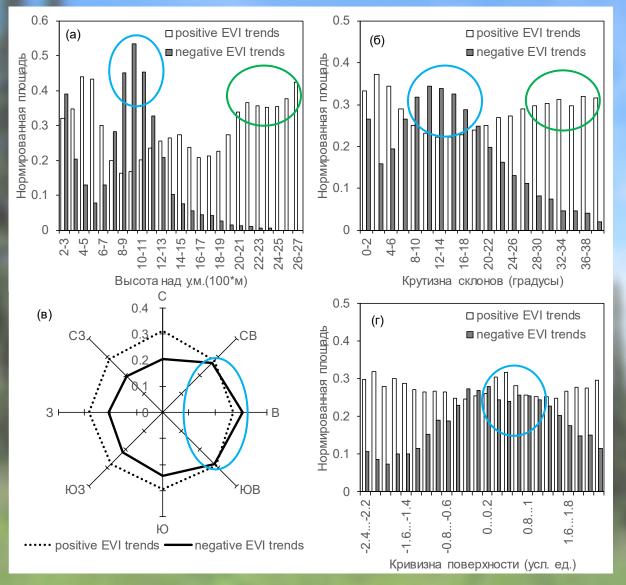
Площадь положительных трендов NDVI в 1.3 раза больше площади положительных трендов EVI.

Площадь отрицательных трендов EVI в 2.4 раза больше площади отрицательных трендов EVI.


Связь динамики индекса EVI с температурами воздуха (2000-2021)

На динамику растительного покрова лесостепной зоны существенное (p < 0.05) отрицательное влияние оказывают летние температуры (на 7-13% территории Хакасии), а положительное на территории меньше 1%. Весенние температуры оказывают преимущественно отрицательное влияние на горные леса (на 7-9% территории).

Связь динамики индекса EVI с количеством осадков (2000-2021)


Летние осадки оказывают положительное влияние на 17-22% территории, преимущественно в степной зоне.

Отрицательное влияние зимних осадков обнаружено для 6-8% территории.

Площади территорий со значимыми (*p*<0.05) корреляциями индексов EVI и NDVI с эколого-климатическими переменными (в % от территории Хакасии)

	Годовые				Летние				Весенние				Зимние			
	+R		-R		+R		-R		+R		-R		+R		-R	
	EVI	NDVI	EVI	NDVI	EVI	NDVI	EVI	NDVI	EVI	NDVI	EVI	NDVI	EVI	NDVI	EVI	NDVI
Глубина снежного покрова (мм)	2.0	1.1	0.8	1.7	2.0	2.8	0.7	0.3	1.6	0.7	0.8	1.4	1.0	0.5	0.5	3.3
Температура почвы на глубине до 7 см (°C)	0.2	0.4	4.7	5.1	0.1	0.3	15.0	9.9	0.4	0.5	6.0	8.4	1.0	0.7	0.5	2.3
Температура почвы на глубине до 7-28 см (°C)	0.2	0.4	4.5	5.8	0.1	0.2	15.1	10.9	0.5	0.5	4.8	7.8	1.3	0.9	0.4	1.9
Индекс сухости SPEI12	5.7	4.2	0.4	0.8	8.2	6.8	0.3	0.4	2.7	1.4	0.4	0.8	4.6	1.3	0.3	1.2
Температура воздуха (°C)	0.5	1.1	2.0	1.2	0.1	0.5	13.0	7.6	0.2	0.4	9.3	7.5	0.8	1.5	2.4	1.0
Количество осадков (мм)	4.9	8.7	0.4	0.7	17.7	22.1	1.8	2.8	4.0	6.9	1.1	0.5	0.3	0.4	6.2	8.0
Влажность почвы на глубине до 7 см (m³/m³)	8.1	10.3	0.8	3.7	15.5	15.1	0.1	0.5	2.2	2.8	2.4	1.9	6.9	7.2	1.1	0.6
Влажность почвы на глубине до 7-28 см (m³/m³)	9.1	11.1	0.9	3.7	16.0	16.5	0.2	0.4	3.8	3.7	2.3	2.1	6.9	5.6	1.1	0.6
Направление ветра (градусы)	1.7	3.9	0.5	0.4	1.7	6.2	1.9	0.4	2.8	4.9	1.0	1.1	3.0	1.8	1.0	1.4
Скорость ветра (м/с)	0.9	1.1	1.7	1.3	0.2	0.2	13.4	17.8	2.2	2.6	1.5	0.8	1.5	1.6	1.6	1.9

Динамика площадей значимых трендов индексов EVI и NDVI в связи с рельефом

Распределение положительных (positive) и отрицательных (negative) трендов индексов EVI и NDVI (p < 0.05) в зависимости от (а) высоты над у.м., (б) крутизны и (в) азимутальных направлений склонов

В период 2000—2021 гг. преобладали положительные тренды вегетационных индексов, распределение которых в зависимости от рельефа являлось неоднородным. Высота над уровнем моря является одним из существенных факторов, оказавших влияние на динамику растительного покрова. Максимум отрицательных трендов наблюдается на восточных склонах, а положительных на западных.

Заключение

- В 2000-2021 гг. на территории Хакасии преобладали положительные тренды вегетационных индексов (ВИ) (16–22% территории vs 1,2–2,8% территории), на динамику который существенное отрицательное влияние оказали летние температуры воздуха и почвогрунтов, а положительное летние осадки и влажность почвогрунтов. Тренды ВИ распределены неравномерно в зависимости от топографии. Положительные тренды преобладают в горной местности на высотах больше 2000 м на крутых склонах, а отрицательные на высотах 800—1200 м на склонах восточной экспозиции.
- Наблюдаемая по картам динамика площадей лесных территорий Хакасии в 21 веке является неоднозначной. В целом, наблюдалось сокращение площади древостоев до 2014 г., с последующим восстановлением. Площадь хвойных вечнозеленых и лиственных древостоев преимущественно возрастала на высотах больше 1400 м над у.м. При этом площадь смешанных древостоев сокращалась. На происходящее оказали значимое влияние апрельские и майские температуры, и летние осадки.

СПАСИБО ЗА ВНИМАНИЕ!

Исследование выполнено при финансовой поддержке гранта Российского научного фонда (проект № 22-17-20012, https://rscf.ru/project/22-17-20012) при паритетной финансовой поддержке Правительства Республики Хакасия.